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Preface

This HABILITATIONSSCHRIFT consists of seven papers which were written
during the last five years. The first two were written together with T. de
Jong, and the fifth with J. Montaldi. I take the opportunity here to thank
them for many years of friendship and fruitful collaboration. Of course, also
many thanks to all my colleagues and friends in Kaiserslautern, who were
always willing to help me.

The papers form a unity in the sense that they all are about certain aspects
of the theory of singularities, and more specifically, about deformations of
these. Hopefully, the choice made here also will give some idea of the many
aspects of Singularity Theory.




-3

Table of Contents

Iniroduction

On the Base Space of a Semi-Universal Deformation
of Rational Quadruple points

On the Deformation Theory of Rational Surface Singularities
with Reduced Fundamental Cycle

Tree singularities: Limits, Series and Stability
Periodic Orbits near a Resonant FEquilibrium Point

Quotient Spaces and Critical Points of Invariant Functions
for C*—actions

A Note on the Discriminant of a Space Curve

A quintic Hypersurface in P* with 130 Nodes

27

97

149

163

211

223




Introduction

We will understand by the term singularity just a germ of a complez analytic
space or an appropriate representative thereof. It has become a custom in
singularity theory to use symbols such as X to denote a singularity, and Ox
for their structure ring, rather than the germ notation (X,p), Oxp). As
most things in singularity theory “are local”, this usually does not cause any
problems. It should always be clear from the context what is intended.

The first thing one does when one comes across a singularity is to ask about
the most basic invariants, its dimenston dim(X') (that is, the smallest n such
that there is a finite map X — C"), its embedding dimension embdim(X)
(that is, the smallest m such that there is an embedding X — C™), and
then determine its singular locus & C X (that is, those points g where
dim(X, ¢) < embdim(X,q)). If £ = {p} we say that X has an isolated sin-
gular point, or is an isolated singularity.

In this Habilitationsschrift we are concerned with various aspects of defor-
mations of singularities. Recall that a deformation of X over § is a cartesian
diagram

X = X
l ™|
{0} — §

where 7 is a flat map. Here S is also a germ of an analytic space. After tak-
ing appropriate representatives for X' and S, we can speak about the fibres
X, :=77(s), s € S. Flatness is a technical condition that guarantees that
these fibres form a “sensible” family. For instance, the dimensions are all

the same, but it is a fundamental problem to understand the exact relation
between X and X,.

If for generic s € S the fibre X, is smooth, then we say that the deformation
is a smoothing of X, and will call such a nearby smooth fibre a Milnor fibre
of X. Although X is contractible of dimension =, this nearby fibre X, will




plex n~dimensional Stein manifold with a non-trivial

. 3 Versality means that any given deformation X — S is induced from this
in general be some com . ) 24 42 _ 52 = 0} Y Vg

topology. The smoothing of the Ay-singularity {(2,¥, z)jz* +y : one by pull-back via some map j : § — B, that is one has X = Xg x5 S.
is archetypical: So in some sense B contains all the deformations of X. The semi-uni refers

Figure 1: Smoothing of the A,-singularity

nor fibre has the homotopy type -of thehl—
sphere, but in the complex domain it is a 2-sphere. If St ;ls .lrredum‘;‘l:éta;i
’ 1 1 is conne ,
the set of points where X, is not smooth,
e o e 1l bf: diffeomorphic. But if 5 has more components,

11 the fibres X, wi - .
}cllizncea,apriori there is 1:che possibility of essentially different topology over the

different components. This leads to the following

In the above real picture, the Mil

Problem : « Given X, how many different X, are possible?”

A first step in a systematic study of this problem is the following

Theorem : I X is an isolated singularity, then it has a semi-

universel deformation.

X < XB
! ml
{0} — B.
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to the fact that by taking B versal of minimal dimension, the classifying map
j is unique on the tangent level, although j itself is not unique. For short
we will refer to B as the base space of X. It is uniquely determined by X,
although only up to non-unique isomorphism.

A version of this theorem, under the condition that the obstruction group
(see below) T? = 0, was given by Tjurina [Tjl1] (in these cases B is always
smooth); the general result was obtained by Grauert [Gra]. A formal version
of the theorem was known earlier through the work of Schlessinger [Schll].

Now, in general, there is not much that can be said about B: it could be any
sort of analytic space. But one thing is clear from this: only finitely many
different fibres X, can occur. For B has finitely many irreducible components
and over each component one has, at most, one type of smooth fibre oc-
curring. If, over some component, smoothing occurs, we call it a smoothing
component of X. Of course, it might happen that over different components
of B one finds diffeomorphic fibres. In fact, this always happens for (reduced)
curve singularities, that is dim{X) = 1. The reason for this is that the topo-
logical type of a complex one-dimensional Stein space is determined by the

rank of its first homology group. In fact one has the formula (see [B-G],
(1.2.1)):

p:= rank Hy(X,)=28(X)—r(X)+1.

Here §(X) is the so-called é-invariant of X, and r(X) is the number of
branches of X. Although not all curve singularities have a smoothing ([Pil],
[Grel]), we see that when they have, the topology of the smooth fibre is
determined by X alone.

For surface singularities (that is dim(X) = 2), the situation is very different.
H. Pinkham [Pil] has found the first example of a singularity having more
than one, to wit two, different components in its base space. Both compo-
nenis are smoothing components, and the topology of the fibres over the two
components is very different. The singularity X can be described as follows:
Take Y = C2, let the cyclic group G = Z /4 act via (z,y) — (v —1.z,v/—1.%),
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1 4 3, 222 gy y%). From this one sees
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that X might alternatively be defined as the projective cone
Cone(Cs) C C*

12 pe four. The
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4 =
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Figure 2: Base space of the Pinkham example
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The geometrical reason for '
the cirve ¢, C P* occurs as hyperplane section of two

degree 4 in P*: the Veronese surface and a scroll.

However, the cones
1 jO(n) Pn)
X, = Cone(Chr), ¢, = Image (P~ — ,

v

ne of dimension one, and one of dimension

The fibre over the origin 1s our given X; all
mology groups over the two components are

ccurrence of these two components is that
different surfaces of

for n $# 4 have only one (smoothing) component. This can be established
by a direct calculation which, although not very complicated, somehow fails
to ezplain these simple facts. Furthermore, a result of Schlessinger [Schl2]
shows that higher dimensional quotient singularities (with singular locus of
codimension > 3) are rigid, that is have B = point. This shows that some-
thing interesting is going on for (normal) surface singularities. In 1981 the
paper “Smoothings of normal Surface Singularities”, written by J. Wahl,
appeared ({Wa6]). Here he discovered the main features of smoothing com-
ponents of surface singularities. Some of his results were conjectures only,
but by the work of Greuel, Looijenga and Steenbrink all his conjectures are
now theorems. Among their results we mention:

1. The first betti number b;(X,} of the Milnor fibre over any smoothing
component is zero ([G-S]). So a Milnor fibre has two interesting ho-

mology groups, Hi, a torsion group, and H,, a free abelian group, of
rank p, the so-called Milnor-number.

2. The difference of 2p and the dimension of the smoothing component
depends only on X, and not on the choice of the smoothing compo-
nent ([G-L]). In particular, components in the base space of a normal
surface singularity can differ in dimension only by even numbers. If X
is Gorenstein, then in fact p is an invariant of X ([Laufl], [Stee2]) and
so all components have the same dimension.

As Pinkham’s example shows, it is interesting to study base spaces of even
the simplest surface singularities. A natural class is formed by the so—called
rational surface singularities, introduced by M. Artin in 1966 [Artl]. This
broad class, that includes the quotient singularities C*/G, is defined in terms
of a resolution p:Y — X of X by the condition R'p,(Oy) = H(Oy) = 0.
The ezceptional divisor E = p~*(0) consists of a union of P'’s, intersect-
ing in the pattern of a tree I'. The condition of rationality can be checked
by looking at this resolution graph T, where each curve is labelled with its
self-intersection in Y. A rational surface singularity X of multiplicity m has
embedding dimension m + 1; those of multiplicity 2 are the well-known A—
D-—E-singularities in three-space ([DuV], [Dur], [Gre2]). As hypersurfaces,
t_hese have a smooth bases space B. The rational triple points reside in C*,
and ‘as such are determinantal, giving rise again to a smooth B [Tj2].




As rationality is defined in terms of a resolution, it seems natural to study

the deformation theory also from the resolution. E. Brieskorn ([Bril}, [Bri2},
[Bri5] made the beautiful discovery that all rational double points have st

multaneous resolution after base change. Another way of saying this is that

the semi-universal deformation of the resolution Y, which is a smooth space

By, maps finitely and surjective to the base space Bx of X. Furthermore, the
resulting map By — Bxisa Galois—covering and can be naturally identified
with the quotient map by the corresponding Weyl group. These results were
extended to more general cases by M. Artin in [Art2] and J. Wahl [Wa3].
It was found that the deformations of a resolution form a smooth space,
and all these can be blown down to give deformations of the singularity X
and, TMoOTreover, the image is always a component of B, the so called Artin—
component. This explains all deformations in the case that the multiplicity
is two or three, but Pinkham’s example shows that there are other types of
deformations as soon as the multipliaty exceeds three.
The question arises how to determine the base space B of a given singularity
X. In principle, there is a nice theory for doing so. For each singularity
X there exists a complex LS of O x-modules, called the cotangent complez,
1-S]. Loosely speaking, this L% can be seen as 2 derived version of the

module of Kahler differentials; in fact one has
Ho(L%) = 0%.

One uses the notation Tk .= H*H om{L%, Ox)). There is extensive, but not
always easy-to-read literature on the cotangent complex ([An}, {Bil, [Buc],
[FY, (11, [Laud], [Pa]). Its relevance for the deformation theory is explained

by the following properties:

Ty = vector fields on X
T, = first order deformations of X
TZ = obstruction space of X.

Here a first order deformation is a deformation of X over the double point
Spec(Clel/ (€)?); the set of all these forms in 2 natural way a C-vector space.
In the case that this space is finite dimensional there exists a semi—universal
family for X. The 7.ariski tangent space to the base B is just T}. Givena first
order deformation of X, we might try to extend it to a deformation to second
order, say over Spec(Clel/(¢)?). This is possible if a certain obstruction in
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T2 vanish :

. OX i o:(Sl;ngil:n OKE lifts the .fa.mil}' to second order, and tries to extend

As a result c: c. All obstructions encountered in this process are in T2
, one can construct a semi-universal deformation of X overXa:

subscheme of the s 1
pace Ty defi
the obstruction map: % defined as the zero fibre of some analytic map,

Ob . T}{ sy szf, B = 05-1(0)_

We see that in thi i
e ;:f; ;r;;ifsrfpr:lslentatmu th.e e.lements of (the dual of) T4 can be seen
g e thor e space B inside T'y. So the theory of the cotangent
X Determiig ths at one should take the following steps to obtain B:
2D . e space of first order deformations T%. .
) Determine the obstructions space T2 *
3) Determine the obstruction map Ob XT}{ — T3
: X

41) Now B = Oy (). D .
. Det
ties. (0 ermine the components of B and study its proper-
The truth i . .
way. A m:;, tha:t on-ly in very special cases can one really determine B in thi
for u rationzlp?mt lls 'f:he non—uniqueness of the obstruction map Ob EVez
impossible to ;mtgu a'nty, ﬂlieﬁned by some resolution graph, it is in g-enera.l
etermine Ty from the resolution data, although some partial

results were obtained in [B-K i
already at its first sbep. [B-K]. This seems to frustrate the above program

Around 1988 several breakthrough : .

of J. . Aroughs were achieved. First, there was

explicﬁr:edtto?t ci:r(;hc quotler.lts [Arn]. He was able to ’give a mort;hzrwf:;l:

resolution gra.p](j i o dEﬁ].th B for a cyclic quotient in terms of the dual

b A o y generalizing the equations describing the deformation
in—component that were obtained earlier by Riemenscbneidei

([Rie2]). He found a v ;
o e sustions 2 2):ery simple formula for the dimension of 72 (from now

dim T* = (m ~ 1)(m - 3

where m 1 C xe .
aroundn:hl: z}:e m:.itiphmty of tl_fe cyclic quotient. (This was also discovered
me time by J. Christophersen.) Moreover, he was able to con-

jecture, on the basis of th :
es
components of B. e equations, an upperbound for the number of

Then, J. 3
en, J. Kollar and N. Shepherd-Barron [K-S] applied ideas from the theory




othing components of surface singu-
of Fn.inimal mOdel’:,h:,i ?111;;?501’?]153;03:2;&:(1 thst all smoothing comp.onents of
kmtle?. Amc'mgto e from ;o-—called P-resolutions, which are partial IeSO].;ll—
" cyclic gioe? )((JOI?vhich have nef relative canonical bunfdel, and whc‘tre ’Jcche
tions 7 : Y — i fled qG-singularities. A qG-Singulari*fy is one for which tes
space Y has sopha.s an equivariant smoothing. In this p1ctu.re the compci?ex}
ca-nomcal e down a deformation of the partial resolution i}hat loc:a y J:;L-
arise by blovgng oothing, Pinkham's example is itself a qG-singularity: the
duces this 4 ’SH’: omes 'from the fact that the canonical two—fold.coverh%s
smal C?mponde iy bl;e oint Ay. This has a one-dimensional SI‘I}OOthl.]lgn(t };s
the Ordllla-:TY o wlf’ich the group action lifts. This nicely ' explains” % te
is figare 1)% ;}r?}( )= Z/2. The idea of using covers to o‘bta,}n -componen s
e oa i 1b SJ Wahl [Wab]. Conjecturally, something similar happens
s used ??r Iel]; sirfr;ce singularity (“Kollar’s conjectun'as”).. - .
for amy @ 10113}; t time, T. de Jong and 1 started working 1n a t‘:hﬁeren. _
Alscf eround t aébl th’e ic;lea of series of isolated hypersurffxcie smgulantms,
rection. Ins-Plret dy tudying so—called isolated line singularities [Sll] from al
o Slefs_ma St?‘r teof Sview. R.. Pellikaan considered hypersurfaces with gen.era,d
topdo'glcal I')Olnl ingular locus £. The most precise results were obta;lea
?ne*dlmeﬂﬂm’}lla ; nga.s assumed to be a complete in:tersgctn?n, but | e |
in thf_’ Ca;e 1W z;e tempting example of a hypersurface 1n C3, with th;a ﬁnmn
C?ir;i;r:es:oordinate axes as singular locus. It can be defined as follows.
[8)

Let
F( zabcf,a)'—'Xz+Y2—l-Zz+2,\.(XY+YZ+ZX)+2;Lmyz
T, Y, 1 &5 9y & T
where ) is a fixed complex number A? # 1 and
X = (y—b)z+c)+abe
Y = (z—c)(z+a)tdac
7 = (z—a)y+b)+ 4ab.
Here a, b, ¢, i are parameters. Consider the surface
X(a,bc,p) = {(z,y,2)|\F(=,9,% 8 b,c,p) =0}

1 di-
) 1 the surface still has the coor
_ p=c=0 and pis arbitrary then . ord
N :e axl;s ascsingular locus, but if p =0 and a,b,care arbitrary then
na

viil

coordinate axes undergo a flat deformation. In fact, the a, b, c~parameters
define a semi-universal deformation of the coordinate axes and for generic

a, b, c this becomes a smooth curve. For all other values of the parameters,
however, the singular locus of the surface is smaller.

Figure 3: Pellikaan’s example

Note that the parameter space is exactly equal to the space of figure 2, the
base space of Pinkham’s example. This is no coincidence; the normalization
of the surface X(0,0,0,0) actually IS Pinkham’s example. So in fact we
are looking here at a projection to C* of this example. From this idea we
developed the theory of admissible deformations Def(T, X) of hypersurfaces,
which consists of deformations of X, together with its singular locus &, [J-S1].
It was shown in [J-S2] that the base space of the semi—universal admissible
deformation is the same as the base space of the normalization, up to a
smooth factor.

The big advantage of working with Def(X, X) rather then directly with the
deformations of the normalization, is that now we have a space curve ¥ and a

ix
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is easier to understand than 71

-nation of this work wit
o CO::EI?: 1Igns-hrﬂtce, J. Christophersen and T.

P of T2 of a rational surface singularity:

formula for the actual dimension

H 2
dim T% =(m—1)(m- 3} +dim T%

where X is the blow—up of X at the origin. O}r:s £o
of rational singularities, whose resolution grap

X

L what was known for quadruple points
de Jong to conjecture a

X one finds a finite number
be obtained easily from

the resolution graph of X by a theorem of Tjurina ([Tj2}), so this formula
would enable computing dimT? for a rational surface singularity from the
resolution graph.
Unfortunately, the formula is not true in general, but it turns out to be true
in the case that X is a rational surface singularity with a reduced funda-
mental cycle. Another way of formulating this condition is saying that the
general hyperplane section consists of the m coordinate lines in C™. This
broad class includes the cyclic quotients, but not all quadruple points have
reduced fundamental cycle. These rational surface singularities with reduced
fundamental cycle are the subject of investigation of the second paper in
this Habilitationsschrift. In this paper we were able to prove the above T~
formula, and, furthermore, see enough from T to give a more or less explicit
description of the equations for the base spaces of such singularities, in some
sense similar to the results of Arndt. To obtain these results, we were led
by a certain heuristic method of degenerations to free singularities that is
explained in the third paper.
However, having the equations is a different matter than understanding the
components. J. Christophersen was able, by looking very carefully at the ob-
struction map in the case of cyclic quotients, to give the right guess for the
number of components in terms of the combinatorics of continued fractions
representing zero. (J. Stevens [Stev2] then could prove this by combining the
ideas of [K-S] and [Ch2] in a clever way). A similarly beautiful and simple
result is not possible for general rational surfaces with reduced fundamental
cycle, but there is some sort of substitute, the so—called picture method, a
method under development by T. de Jong and the author. This method
identifies the base space (up to a smooth factor) with a certain configuration
space of points and curves in the plane. Informally, we have a collection of
curves C;, and on each C; a collection of points {or rather, a subscheme of
finite colength) P; C C;. One now looks for those configurations where

(C:-Cj) C P

holds for all 7z and j. For Pinkham’s example one obtains as configuration

three lines through one point, and on the intersection point a fat point of
colength two on each of the lines.




® =2(0c+0C+D )
Figure 4: The Picture Method

The deformations of this configuration which satisfy the above condition
come clearly in two types. Firstly, we can move the three lines apart to form
a triangle. The points are now forced, on each line, to sit on the intersection
points with the other two lines. Secondly, we can move One of the points on
each line away from the :ptersection point. The other three points are now
forced to stay behind, and furthermore, the three lines no longer can move
apart without violating the condition. A Lttle reflection will convince the
reader now that again we have found the same space as in figure 2! This
gives a nice ezplanation of why there are two components. Using the same
method, one can see that the cones over the rational normal curve of higher
degree have only one component. The main features of the theory are ex-
plained in the last part of the third paper in this Habilitationsschrift, with
the title “Tree singularities: Timits, series and stability”. Tree singularities
are certain non—isolated degenerations of series of Tational surfaces with re-
duced fundamental cycle. Their importance can be understood by the fact
that these singularities have a T? that is really the same as that of their
series members. In fact more is true: the equations of the base space 1n such
a series stabilizes after some point. This means that “high upin a series” the
base space stays the same up to a smooth factor. This phenomenon was also
clearly visible from the work of Arndt, and in our work on rational quadru-
ple points. In this third paper one finds the first attempts to formulate this

xil

important phenomenon which seems to be rather general

The picture method h
. ; as many promises, and : .
its fruits. I . ses, and we are just be i .
many ini.ere?t'a forthC.OInl.ng paper with T. de Jong [J~55] Vf;ni?ﬁgdto P_mk
singulariti li_g applications to the component structure of rati : 1 corihe
tes which seem to be totally out of reach of more trail'?na furface
1tional meth-

ods.

A deformation

X o X
l fl
{0} - S

can also be considered fro
: m another poi ;

X . ' point of view: rat .

queasst iij::ilwe rn.lght consider A’ as given, and studr; 11;1? :h;n * anSIder

we consid at arise are of a different nature. The simpzl)est c_} . Lhe

germ ’I‘hir one-parameter deformations, say where S is a sn?Zetll: e
. n we are studying X' togeth . oth curve

it. T . gether with a germ of :

~ (C]:ilﬁéit Kﬁ t?I‘gonSIder here is the case where X isaaf:;f:'m:g S o
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when th : . an isolated singulari :

il df; rfilin;:-taon g has an _1sola.ted critical point, Whic]f n-:;;); I:lzeimdy

partia derl ab:)ves;l f d/ dz; ,i =0,...,n, have only 0 as common Z: the

situation thge hur ood B of the origin. The Milnor fibre X, has _m;;‘?t

) omotopy type of a bouquet of n-spheres, and t?ne nli 1{; 1;
’ mber o

sphe =p=
res (= p = rank Hp(X,)) can be computed algebraically as:

p = dimg(C{zo, ..., 2.}/(0f/0q,...,8f/8z,).

We could i :
f The fol ;;;?;élfz :;fi;];ns ?umber as the multiplicity of the critical point of
e of conservation ]
one—parameter family of functions f; with ‘}f:“z E':;e};"if:-hlf e consider 2
) ave:

w(£,0) = > p(fuz).
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Figure 5: p =2

al meaning of the Milnor pumber, this constancy is

In view of the topologic
this is due to the fact that the partials of f form a

clear, but algebraically,

regular sequence.
For functions on singular spaces things are not soO straightforward. ON the
at theorem of Siersma [Si4] that states that if

topological side, there is a rece
t, then the Milnor fibre has homotopy type

X has an isolated singular poin
of a wedge of n—spheres, wedged with the Milnor fibre of a generic linear

hypersurface section.
In [B-R] a general multipliciby

was defined as:
LBR = dime(Ox/(©@x(F))-

For this number to be preserved under perturbation in the above sense, the

space X has to satisfy rather strong, and hard-to—verify conditions. What
basically is needed is co tor fields on X. Bruce and

mplete control over the vec

Roberts were able to show that these conditions were satisfied in the case that
X is itself a guasi-homogeneous isolated complete intersection singularity
and in the case that

X is the quotient of a smooth space be a finite group.
This last case, of course, is very i

mportant. In many applications one has a
function f on a smooth space Y, smvariont under some gr

oup acting on the
space. Under these circumstances it is natural to consider the function to be
defined on the quo

tient space Y/G. In the case that the group is finite this
has been studied in some

detail by [Rol, and in fact, by taking the invariant
part of Jacobian algebra, one gets a formula for the number of critical G-
orbits appearing in & gene

ric invariant perturbation of f.
Somewhat surprisingly, this is no longer the case for infinite groups. Already
for the simplest infinite groups,

of a critical point of & function f: X — C

to wit C*, the invariant part of the J acobian
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ring is not the right thing to consider. Th

ring 18 not . . e fifth paper of the ilitati

» C*_;Ctgfnt:nairge;;fr with J. Montaldi, is concerned with thgz::;t:.?ons-

of & ach m{,) and & 1 n;:n' nurnbfzrs for_invariant functions. Our point of :’ase

ot ural to c_onmder differential forms on the quotient oy
n appropriate way the formula e

,Ua(f) = dimg Q"+1/df A QT

which gives, i
case, digffel-:;]:}rt,l;; smoot(]; case, the same as before, but is, in the general
Milnor fibre. and isJu’BR' ur number relates directly to the topology of t;
such a Situa’t . FuPtrzserved under perturbation, as is to be expected in
o the Brieskoén_hzt' ermore, the theory of the GauS—~Manin connecti in
(Brid], [Ph) ice can be carried over to this situation (c.f o
, . ctf. [S-5],
The fourth paper explains our motivati
detail: the . : otivation to look at the C*—case i
([Dui]) gzvetzzfﬂfjf Hamiltonian systems near a resonant equilfblrrilui mt%d:
of perodic orbits 0{3; r1sele1 to p‘robiems of this sort. In this paper the couiic:)' m
of algebraic geometr maA p;];md was solved in a special case using meth;?lg
tors, it contains an o }2(-1 s the paper was written for non-algebraic geom y
rathermatics. The p ?ﬂatxon of some standard techniques from this field e’-f
to solve the I.Jroblerrrfssfts o t%ze fifth papet on C*—quotients can be api)li:d
Probably the techat count?ng the periodic orbits in general, see [Mont
clude more general lque:. and ideas of the C*-paper can be extended t E !
extensions are Curreqli? lents, aFld ful?ctions on affine toric manifolds Tcl):l o
ing applications in ti Y uI-lder investigation, and seem to have ve ' o
eoretical physics. Ty promus-

I have menti
e 8 v;:;ii izfcze tfha.t the geI}eFal theory of the cotangent compl
sixth paper however shse or the explicit understanding of base spaces I':)[‘le;x
gonoral machinery. Th 0*.1'\;3 that one can prove some nice results usin. th'e
2 space curve X is-, - : : Ié:se: Aspace B of the semi—universal deforma.tigon c1>sf
nside B wo find a b o .f Iso, thfa general fibre X, will be smooth, but
diseriminant A As ?Per-sur ace of P01.nts where the fibre X, is singula,l: th
tant for undersi;a,ndinpomted clmt earher3 the study of space curves is im,pos
e stontifontion ot ¢ }f n(;).rme.}. sturfa.ce singularities, and it is, in particula
hypersurface is a free ;i'y ;:Ziur::lrlx:?tmxzhichti}: relevant. We prove that thir;
H a.
tangent to the discriminant is a free mogile. a'_tl‘li}j ecizg;lieo})favfiiiordﬁeilds
ivisor

XV




was introduced by K. Saito [Sa], who also proved that the discriminant of the
semi-universal deformation of isolated complete intersection singularities is
an example of such a free divisor. Discriminants in general are very singular
objects, but the freeness is a property that they have in common with smooth
hypersurfaces. As freeness means complete control over the vector fields, one
can effectively study functions ¢ : A — C on free divisors. In ([D-M]) it
was shown that the so-called singular Milnor fibre of a section S — A with
a smooth space has the homotopy type of a wedge of spheres, the number of
which can be calculated algebraically. Recently, J. Damon has generalized
these ideas, and proposes the category of almost free divisors as a proper
framework to formulate results of this type ([Dal).

In the seventh paper the construction of a quintic hypersurface in P* with
130 nodes as singularities is described. As this type of result is slightly out
of line with the other papers, let me try to put this in some perspective. If
a hypersurface X, is the nearby fibre of an isolated hypersurface singularity

X, then on has:
wX)z 3 wl(Xe2)
xEXs

so the Milnor number is semi-continuous under deformation. The spectrum of
X can be thought of as a refinement of the Milnor number and was introduced
by J. Steenbrink in [Steel], see also [Steed]. It consists of a set of p rational
pumbers, which are logarithms of eigenvalues of the monodromy, where the
integer part is determined by the Hodge filtration on the cohomology of the
Milonor fibre. It was Arnol’d who conjectured a semi-continuity property
for the spectrum, and Varchenko [Va] who proved it for quasi-homogeneous
singularities. Finally, J. Steenbrink proved the semi-continuity property in
general, stating that the number of spectrum numbers In any interval of
the form (a,a + 1] of X is bigger than or equal to the number of spectrum
numbers of all the singularities of X, in the same interval.

Varchenko also gave a beautiful application of the semi-continuity of the

spectrum to a global problem of singularity theory, which we will describe
now. In general, the maximum number Ny(d) of ordinary double points a
hypersurface of degree din P™ can have is unknown, As the complement of a
general hyperplane section of any hypersurface can be seen as a deformation
of the affine cone over this section, the semi~continuity of the spectrum can
be used to get an upperbound for N,(d), and it turns out to be a very good

xvi

e .__Ii' gez.leral. Let us see what is known about N, (d) for low values for n
and d. It is easy to see that in P? a curve of degree d with maximal number

of -O-Hble points must be a union of lines in general position. The number of
ordinary double points is then clearly (g) = Ny(d).

e
P

Figure 6: Ny(5) =10

For surfaces in P?® one has N3(2) = 1 (the ordi
. ‘ = rdinary cone), N3(3) = 4 (th
Cla.{.leg; C?bﬁ:‘ 856 -[(iay]), N3(4) = 16 (a Kummer Quartic, see [I?:I(u])) N3(5() j
(a Togliatti Quintic, Tol). i : igh cs
e ‘:;e. [To]). The precise value of N3(d) for higher values
S
;E‘\?_l&:)oliizm P* one has Ny(2) = 1, Ny(3) = 10 (the Segre Cubic, [Se])
4(4) = 45 (the Burkha?dt Quartic, [Bur]). These last two varieties ha,vc;
many rema.r}f(a.ble properties, and their geometry was studied very thoroughl
¥ the- classical geometers. Nevertheless, new properties of these varieti '
were discovered recently ([H-W]). o
‘or all these cases Varchenko’s n 1
: pperbound is sharp. The value of Ny(5) i
unknown, but it follows from Varchenko’s spectral bound that Ny(5) i( 1)3;s

he quintic with equation
5
zo + :Bf + :L";’ + mg + mi — dzpzyToxary = O
s called Schoen’s Quintic and has 125 ordinary double points, {Scho]. In

Hi] Hirzebruch mana,
A ged to construct a quintic with 12
quation (the homogenisation of) 1 6 nodes. He took as

F(z,y) ~ F(z,t) =0

xvil



0 is the equation of a regular pentagon, as in figure E
h 130 nodes is surprisingly s1mp1e., as t e
ast paper. At this moment of writing, 1t

where F(z,9) = equati
The construction of the guintic wit

. : 1
d 11 find out by reading the ; of wr
g: athzr*:olrld record, and it is very well concievable that Na(5) = 130

: . . .
Quintics in P* are the simplest examples of Calc.cbz- Yau mami]l‘olffis, wil:ic}:;lzz :
very much in the center of current interest in high energy pihysics &

braic geometry, see [Can], [Mor].
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